Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(9): 103018, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522861

RESUMO

Mutations in the GNB1 gene, encoding the Gß1 subunit of heterotrimeric G proteins, cause GNB1 Encephalopathy. Patients experience seizures, pointing to abnormal activity of ion channels or neurotransmitter receptors. We studied three Gß1 mutations (K78R, I80N and I80T) using computational and functional approaches. In heterologous expression models, these mutations did not alter the coupling between G protein-coupled receptors to Gi/o, or the Gßγ regulation of the neuronal voltage-gated Ca2+ channel CaV2.2. However, the mutations profoundly affected the Gßγ regulation of the G protein-gated inwardly rectifying potassium channels (GIRK, or Kir3). Changes were observed in Gß1 protein expression levels, Gßγ binding to cytosolic segments of GIRK subunits, and in Gßγ function, and included gain-of-function for K78R or loss-of-function for I80T/N, which were GIRK subunit-specific. Our findings offer new insights into subunit-dependent gating of GIRKs by Gßγ, and indicate diverse etiology of GNB1 Encephalopathy cases, bearing a potential for personalized treatment.

2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001616

RESUMO

L-type voltage-gated CaV1.2 channels crucially regulate cardiac muscle contraction. Activation of ß-adrenergic receptors (ß-AR) augments contraction via protein kinase A (PKA)-induced increase of calcium influx through CaV1.2 channels. To date, the full ß-AR cascade has never been heterologously reconstituted. A recent study identified Rad, a CaV1.2 inhibitory protein, as essential for PKA regulation of CaV1.2. We corroborated this finding and reconstituted the complete pathway with agonist activation of ß1-AR or ß2-AR in Xenopus oocytes. We found, and distinguished between, two distinct pathways of PKA modulation of CaV1.2: Rad dependent (∼80% of total) and Rad independent. The reconstituted system reproduces the known features of ß-AR regulation in cardiomyocytes and reveals several aspects: the differential regulation of posttranslationally modified CaV1.2 variants and the distinct features of ß1-AR versus ß2-AR activity. This system allows for the addressing of central unresolved issues in the ß-AR-CaV1.2 cascade and will facilitate the development of therapies for catecholamine-induced cardiac pathologies.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Proteínas ras/metabolismo , Animais , Canais de Cálcio Tipo L/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Camundongos , Mutação , Miócitos Cardíacos/citologia , Oócitos/citologia , Oócitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Coelhos , Receptores Adrenérgicos beta/genética , Xenopus laevis , Proteínas ras/genética
3.
Channels (Austin) ; 10(1): 55-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577286

RESUMO

The modulation and regulation of voltage-gated Ca(2+) channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca(2+) channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca(2+), presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca(2+)-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca(2+) entry into the cell.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/genética , Membrana Celular/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Coelhos , Relação Estrutura-Atividade , Xenopus
4.
J Physiol ; 592(24): 5373-90, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25384780

RESUMO

The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gßγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gßγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gßγ. Inversely, the GIRK2 homotetramers exhibit low Ibasal and strong activation by Gßγ. The high Ibasal of GIRK1 seems to be associated with its unique distal C terminus (G1-dCT), which is not present in the other subunits. We investigated the role of G1-dCT using electrophysiological and fluorescence assays in Xenopus laevis oocytes and protein interaction assays. We show that expression of GIRK1/2 increases the plasma membrane level of coexpressed Gßγ (a phenomenon we term 'Gßγ recruitment') but not of coexpressed Gαi3. All GIRK1-containing channels, but not GIRK2 homomers, recruited Gßγ to the plasma membrane. In biochemical assays, truncation of G1-dCT reduces the binding between the cytosolic parts of GIRK1 and Gßγ, but not Gαi3. Nevertheless, the truncation of G1-dCT does not impair activation by Gßγ. In fluorescently labelled homotetrameric GIRK1 channels and in the heterotetrameric GIRK1/2 channel, the truncation of G1-dCT abolishes Gßγ recruitment and decreases Ibasal. Thus, we conclude that G1-dCT carries an essential role in Gßγ recruitment by GIRK1 and, consequently, in determining its high basal activity. Our results indicate that G1-dCT is a crucial part of a Gßγ anchoring site of GIRK1-containing channels, spatially and functionally distinct from the site of channel activation by Gßγ.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Ativação do Canal Iônico , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Xenopus
5.
Proc Natl Acad Sci U S A ; 111(13): 5018-23, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639496

RESUMO

Lithium (Li(+)) is widely used to treat bipolar disorder (BPD). Cellular targets of Li(+), such as glycogen synthase kinase 3ß (GSK3ß) and G proteins, have long been implicated in BPD etiology; however, recent genetic studies link BPD to other proteins, particularly ion channels. Li(+) affects neuronal excitability, but the underlying mechanisms and the relevance to putative BPD targets are unknown. We discovered a dual regulation of G protein-gated K(+) (GIRK) channels by Li(+), and identified the underlying molecular mechanisms. In hippocampal neurons, therapeutic doses of Li(+) (1-2 mM) increased GIRK basal current (Ibasal) but attenuated neurotransmitter-evoked GIRK currents (Ievoked) mediated by Gi/o-coupled G-protein-coupled receptors (GPCRs). Molecular mechanisms of these regulations were studied with heterologously expressed GIRK1/2. In excised membrane patches, Li(+) increased Ibasal but reduced GPCR-induced GIRK currents. Both regulations were membrane-delimited and G protein-dependent, requiring both Gα and Gßγ subunits. Li(+) did not impair direct activation of GIRK channels by Gßγ, suggesting that inhibition of Ievoked results from an action of Li(+) on Gα, probably through inhibition of GTP-GDP exchange. In direct binding studies, Li(+) promoted GPCR-independent dissociation of Gαi(GDP) from Gßγ by a Mg(2+)-independent mechanism. This previously unknown Li(+) action on G proteins explains the second effect of Li(+), the enhancement of GIRK's Ibasal. The dual effect of Li(+) on GIRK may profoundly regulate the inhibitory effects of neurotransmitters acting via GIRK channels. Our findings link between Li(+), neuronal excitability, and both cellular and genetic targets of BPD: GPCRs, G proteins, and ion channels.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Lítio/farmacologia , Animais , Guanosina Difosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Hipocampo/citologia , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Xenopus laevis
6.
J Biol Chem ; 286(38): 33223-35, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795707

RESUMO

G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gßγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gßγ signaling complex. Fluorescent energy resonance transfer (FRET) studies showed strong GIRK-Gßγ interactions but yielded controversial results regarding the GIRK-Gα(i/o) interaction. We investigated the mechanisms of regulation of GIRK by Gα(i/o) using wild-type Gα(i3) (Gα(i3)WT) and Gα(i3) labeled at three different positions with fluorescent proteins, CFP or YFP (xFP). Gα(i3)xFP proteins bound the cytosolic domain of GIRK1 and interacted with Gßγ in a guanine nucleotide-dependent manner. However, only an N-terminally labeled, myristoylated Gα(i3)xFP (Gα(i3)NT) closely mimicked all aspects of Gα(i3)WT regulation except for a weaker regulation of I(basal). Gα(i3) labeled with YFP within the Gα helical domain preserved regulation of I(basal) but failed to restore fast I(evoked). Titrated expression of Gα(i3)NT and Gα(i3)WT confirmed that regulation of I(basal) and of the kinetics of I(evoked) of GIRK1/2 are independent functions of Gα(i). FRET and direct biochemical measurements indicated much stronger interaction between GIRK1 and Gßγ than between GIRK1 and Gα(i3). Thus, Gα(i/o)ßγ heterotrimer may be attached to GIRK primarily via Gßγ within the signaling complex. Our findings support the notion that Gα(i/o) actively regulates GIRK. Although regulation of I(basal) is a function of Gα(i)(GDP), our new findings indicate that regulation of kinetics of I(evoked) is mediated by Gα(i)(GTP).


Assuntos
Corantes Fluorescentes/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades Proteicas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Toxina Pertussis/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Coloração e Rotulagem , Titulometria , Xenopus
7.
J Biol Chem ; 286(16): 13945-53, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383011

RESUMO

CaBP1 is a Ca(2+)-binding protein that regulates the gating of voltage-gated (Ca(V)) Ca(2+) channels. In the Ca(V)1.2 channel α(1)-subunit (α(1C)), CaBP1 interacts with cytosolic N- and C-terminal domains and blunts Ca(2+)-dependent inactivation. To clarify the role of the α(1C) N-terminal domain in CaBP1 regulation, we compared the effects of CaBP1 on two alternatively spliced variants of α(1C) containing a long or short N-terminal domain. In both isoforms, CaBP1 inhibited Ca(2+)-dependent inactivation but also caused a depolarizing shift in voltage-dependent activation and enhanced voltage-dependent inactivation (VDI). In binding assays, CaBP1 interacted with the distal third of the N-terminal domain in a Ca(2+)-independent manner. This segment is distinct from the previously identified calmodulin-binding site in the N terminus. However, deletion of a segment in the proximal N-terminal domain of both α(1C) isoforms, which spared the CaBP1-binding site, inhibited the effect of CaBP1 on VDI. This result suggests a modular organization of the α(1C) N-terminal domain, with separate determinants for CaBP1 binding and transduction of the effect on VDI. Our findings expand the diversity and mechanisms of Ca(V) channel regulation by CaBP1 and define a novel modulatory function for the initial segment of the N terminus of α(1C).


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/química , Calmodulina/química , Feminino , Deleção de Genes , Humanos , Cinética , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Xenopus
8.
J Biol Chem ; 285(27): 20462-71, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20435886

RESUMO

Loss of neuronal protein stargazin (gamma(2)) is associated with recurrent epileptic seizures and ataxia in mice. Initially, due to homology to the skeletal muscle calcium channel gamma(1) subunit, stargazin and other family members (gamma(3-8)) were classified as gamma subunits of neuronal voltage-gated calcium channels (such as Ca(V)2.1-Ca(V)2.3). Here, we report that stargazin interferes with G protein modulation of Ca(V)2.2 (N-type) channels expressed in Xenopus oocytes. Stargazin counteracted the Gbetagamma-induced inhibition of Ca(V)2.2 channel currents, caused either by coexpression of the Gbetagamma dimer or by activation of a G protein-coupled receptor. Expression of high doses of Gbetagamma overcame the effects of stargazin. High affinity Gbetagamma scavenger proteins m-cbetaARK and m-phosducin produced effects similar to stargazin. The effects of stargazin and m-cbetaARK were not additive, suggesting a common mechanism of action, and generally independent of the presence of the Ca(V)beta(3) subunit. However, in some cases, coexpression of Ca(V)beta(3) blunted the modulation by stargazin. Finally, the Gbetagamma-opposing action of stargazin was not unique to Ca(V)2.2, as stargazin also inhibited the Gbetagamma-mediated activation of the G protein-activated K(+) channel. Purified cytosolic C-terminal part of stargazin bound Gbetagamma in vitro. Our results suggest that the regulation by stargazin of biophysical properties of Ca(V)2.2 are not exerted by direct modulation of the channel but via a Gbetagamma-dependent mechanism.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Neurônios/fisiologia , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Canais de Cálcio/farmacologia , Primers do DNA , Feminino , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Amplificação de Genes , Camundongos , Microscopia Confocal , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Reação em Cadeia da Polimerase , RNA/genética , Xenopus
9.
Biochemistry ; 43(13): 3899-906, 2004 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15049697

RESUMO

LDL oxidation plays a pivotal role in atherosclerosis. Excellular hemoglobin (Hb) is a trigger of LDL oxidation. By virtue of its ability to bind hemoglobin, haptoglobin (Hp) serves as an antioxidant. Oxidation of LDL by hemoglobin was analyzed to occur by heme displacement from methemoglobin lodged in LDL. The LDL-associated heme is disintegrated, and iron inserted this way in LDL triggers formation of lipid peroxides. The genetic polymorphism of haptoglobin was found to be a risk factor in the pathogenesis of atherosclerosis. Individuals with Hp2-2 have more vascular incidences as compared to those with Hp1-1. In the current study, oxidation of LDL by metHb was carried out at physiological pH without addition of external peroxides. Hb-derived oxidation of lipids and protein was found to be practically inhibited by Hp1-1 but only partially by Hp2-2. Heme transfer from metHb to LDL was almost completely omitted by Hp1-1 and only partially by Hp2-2. We concluded that partial heme transfer from the Hb-Hp2-2 complex to LDL is the reason for oxidation of LDL lipids as well as protein. These findings provide a molecular basis for Hp2-2 atherogenic properties.


Assuntos
Haptoglobinas/química , Haptoglobinas/genética , Heme/antagonistas & inibidores , Heme/química , Hemoglobinas/química , Lipoproteínas LDL/química , Fenótipo , Tirosina/análogos & derivados , Alcadienos/química , Alelos , Antioxidantes/química , Transporte Biológico , Humanos , Cinética , Lipoproteínas LDL/antagonistas & inibidores , Metemoglobina/química , Oxirredução , Espectrofotometria Ultravioleta , Tirosina/antagonistas & inibidores , Tirosina/química
10.
Biochemistry ; 42(23): 6977-85, 2003 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12795592

RESUMO

Excellular hemoglobin is an extremely active oxidant of low-density lipoproteins (LDL), a phenomenon explained so far by different mechanisms. In this study, we analyzed the mechanism of met-hemoglobin oxidability by comparing its mode of operation with other hemoproteins, met-myoglobin and horseradish peroxidase (HRP) or with free hemin. The kinetics of met-hemoglobin activity toward LDL lipids and protein differed from that of met-myoglobin and HRP, both quantitatively and qualitatively. Those differences were further clarified by analyzing heme transfer from the above-mentioned hemoproteins to LDL. It appeared that met-hemoglobin transferred most of its hemin to LDL, and the presence of H(2)O(2) accelerated the process. In contrast, met-myoglobin partially released hemin, but only in the presence of H(2)O(2), while HRP could not transfer heme at all. The minor amount of hemin transferred from met-myoglobin to LDL sufficed to trigger ApoB oxidation, forming covalent aggregates via inter-bityrosines. This indicated that heme bound to high affinity site(s) is responsible for oxidation. LDL components providing the sites were analyzed by binding heme-CO monomers to LDL. Soret spectra revealed that the high affinity site of monomeric hemin is located on the LDL protein, ApoB. The complex heme-CO-ApoB underwent instantaneous oxidation to hemin-ApoB, and the bound hemin then slowly disintegrated in conjunction with LDL oxidation. Hemopexin prevented LDL oxidation by trapping hemoprotein transferable heme. We concluded that met-hemoglobin exerts its oxidative activity on LDL via transfer of heme, which serves as a vehicle for iron insertion into the LDL protein, leading to formation of atherogenic LDL aggregates.


Assuntos
Ferro/metabolismo , Lipoproteínas LDL/metabolismo , Metemoglobina/metabolismo , Animais , Apolipoproteínas B/metabolismo , Monóxido de Carbono/química , Bovinos , Compostos de Dansil/química , Heme/metabolismo , Hemopexina/metabolismo , Hemopexina/farmacologia , Peroxidase do Rábano Silvestre/metabolismo , Cavalos , Humanos , Peróxido de Hidrogênio/farmacologia , Cinética , Metamioglobina/metabolismo , Oxirredução , Espectrometria de Fluorescência/métodos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
11.
Int J Biochem Cell Biol ; 35(3): 349-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12531248

RESUMO

Hemoglobin and myoglobin are inducers of low-density lipoprotein oxidation in the presence of H(2)O(2). The reaction of these hemoproteins with H(2)O(2) result in a mixture of protein products known as hemichromes. The oxygen-binding hemoproteins function as peroxidases but as compared to classic heme-peroxidases have a much lower activity on small sized and a higher one on large sized substrates. A heme-globin covalent adduct, a component identified in myoglobin-hemichrome, was reported to be the cause of myoglobin peroxidase activity on low-density lipoprotein. In this study, we analyzed the function of hemoglobin-hemichrome in low-density lipoprotein oxidation. Oxidation of lipids was analyzed by formation of conjugated diene and malondialdehyde; and oxidation of Apo-B protein was analyzed by development of bityrosine fluorescence and covalently cross-linked protein. Hemoglobin-hemichrome has indeed triggered oxidation of both lipids and protein, but unlike myoglobin, hemichrome has required the presence of H(2)O(2). In correlation to this, we found that unlike myoglobin, hemichrome formed by hemoglobin/H(2)O(2) does not contain a globin-heme covalent adduct. Nevertheless, hemoglobin-hemichrome remains oxidatively active towards LDL, indicating that other components of the oxidatively denatured hemoglobin should be considered responsible for its hazardous activity in vascular pathology.


Assuntos
Hemeproteínas/metabolismo , Hemoglobinas/metabolismo , Lipoproteínas LDL/metabolismo , Oxigênio/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Metemoglobina/metabolismo , Mioglobina/metabolismo , Espectrofotometria , Substâncias Reativas com Ácido Tiobarbitúrico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...